Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 249: 118398, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331155

RESUMEN

One of the common causes of water pollution is the presence of toxic dye-based effluents, which can pose a serious threat to the ecosystem and human health. The application of Saccharomyces cerevisiae (S. cerevisiae) for wastewater decolorization has been widely investigated due to their efficient removal and eco-friendly treatments. This review attempts to create an awareness of different forms and methods of using Saccharomyces cerevisiae (S. cerevisiae) for wastewater decolorization through a systematic approach. Overall, some suggestions on classification of dyes and related environmental/health problems, and treatment methods are discussed. Besides, the mechanisms of dye removal by S. cerevisiae including biosorption, bioaccumulation, and biodegradation and cell immobilization methods such as adsorption, covalent binding, encapsulation, entrapment, and self-aggregation are discussed. This review would help to inspire the exploration of more creative methods for applications and modification of S. cerevisiae and its further practical applications.


Asunto(s)
Biodegradación Ambiental , Colorantes , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Colorantes/metabolismo , Colorantes/química , Aguas Residuales/química , Aguas Residuales/microbiología , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos , Descoloración del Agua/métodos
2.
Langmuir ; 38(20): 6376-6386, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35561306

RESUMEN

In recent years, adsorption-based membranes have been widely investigated to remove and separate textile pollutants. However, cyclic adsorption-desorption to reuse a single adsorbent and clear scientific evidence for the adsorption-desorption mechanism remains challenging. Herein, silk nanofibers were used to assess the adsorption potential for the typical anionic dyes from an aqueous medium, and they show great potential toward the removal of acid dyes from the aqueous solution with an adsorption rate of ∼98% in a 1 min interaction. Further, we measured the filtration proficiency of a silk nanofiber membrane in order to propose a continuous mechanism for the removal of acid blue dye, and a complete rejection was observed with a maximum permeability rate of ∼360 ± 5 L·m-2·h-1. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy studies demonstrate that this fast adsorption occurs due to multiple interactions between the dye molecule and the adsorbent substrate. The as-prepared material also shows remarkable results in desorption. A 50-time cycle exhibits complete adsorption and desorption ability, which not only facilitates high removal aptitude but also produces less solid waste than other conventional adsorbents. Additionally, fluorescent 2-bromo-2-methyl-propionic acid (abbreviated as EtOxPY)-silk nanofibers can facilitate to illustrate a clear adsorption and desorption mechanism. Therefore, the above-prescribed results make electrospun silk nanofibers a suitable choice for removing anionic dyes in real-time applications.


Asunto(s)
Colorantes , Membranas Artificiales , Nanofibras , Seda , Descoloración del Agua , Contaminantes Químicos del Agua , Ácidos/química , Adsorción , Aniones/química , Colorantes/química , Filtración/instrumentación , Filtración/métodos , Concentración de Iones de Hidrógeno , Cinética , Nanofibras/química , Espectroscopía de Fotoelectrones , Seda/química , Espectroscopía Infrarroja por Transformada de Fourier , Descoloración del Agua/instrumentación , Descoloración del Agua/métodos , Contaminantes Químicos del Agua/química
3.
Pak J Biol Sci ; 24(11): 1183-1194, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34842391

RESUMEN

<b>Background and Objectives:</b> Anthraquinone synthetic dyes are widely used in textile, dyeing and paper painting. The discharge of these dyes into the environment causes detriment. The removal of physiochemical dyes is sometimes unsuccessful and expensive. Biological removal is inexpensive, eco-friendly and may break down organic contaminants. In the current work, a fungal technique was applied to decolorize and detoxify dye. <b>Materials and Methods:</b> Dye decolorizing fungi isolation, selection and identification of the most effective isolate and dye decolorization optimization based on carbon and nitrogen sources. In addition, the product's cytotoxicity and metabolites were tested. The enzyme activities were measured to determine dye decolorization. <b>Results:</b> Decolorization of reactive blue 19 dye by the most effective fungal strain isolate (5BF) isolated from industrial effluents were studied. This isolate was identified as <i>Aspergillus flavus</i> based on phenotypic characteristics and confirmed using 18S rRNA gene sequencing. Thin-layer chromatography indicated that this strain is aflatoxins free. Furthermore, metabolites produced from dye treatment with <i>A. flavus</i> were assessed using gas chromatography-mass spectrometry. Toxicity data revealed that <i>A. flavus</i> metabolites were not toxic to plants. Using a one-factor-at-a-time optimization technique, a maximum decolorization percentage (99%) was obtained after 72 hrs in the presence of mannitol and NH<sub>4</sub>NO<sub>3</sub> or NH<sub>4</sub>Cl as carbon and nitrogen sources. Two enzymes (laccase and manganese peroxidase) were shown to be active during dye decolorization by <i>A. flavus</i>. <b>Conclusion:</b> The <i>A. flavus</i> strain was shown to be safe when it came to removing dye from a synthetic medium with high efficiency and their metabolites had no negative influence on the environment. As a result, this strain will be used in the future for dye wastewater bioremediation.


Asunto(s)
Antraquinonas/metabolismo , Aspergillus flavus/metabolismo , Descoloración del Agua/métodos , Antraquinonas/análisis , Aspergillus flavus/patogenicidad
4.
J Microbiol Methods ; 188: 106301, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34389364

RESUMEN

Wood degrading fungi are often screened for their ability to degrade xenobiotics such as dyes. Dye decoloration by these fungi on solid media could until now only be assessed qualitatively. We here describe a fast quantitative method to screen for dye decoloration on such media. Decoloration of crystal violet (CV), malachite green (MG), orange G (OG), rose bengal (RB) and remazol brilliant blue R (RBBR) by 124 isolates of the basidiomycete Schizophyllum commune was quantified with a flatbed scanner and the CIE-L*a*b* model. Colour and intensity changes were calculated with the Euclidean distance formula. More than 10 strains showed high MG decoloration. Isolates 136, 140 and 213 showed superior CV decoloration, while OG was most effectively decolorized by isolates 183, 216 and 227. Six strains showed high RB decoloration with isolate 216 being superior. The latter strain was also highly active on RBBR together with isolates 177 and 227. Together, dye decoloration was highly variable between the 124 isolates but strain 216 showed high activity on 3 out of 5 dyes. The fast screening method described in this paper enables identification of strains effectively decolorizing dyes.


Asunto(s)
Colorantes/metabolismo , Descoloración del Agua/métodos , Xenobióticos/metabolismo , Antraquinonas , Compuestos Azo , Basidiomycota/metabolismo , Biodegradación Ambiental , Hongos/metabolismo , Violeta de Genciana , Schizophyllum/aislamiento & purificación , Schizophyllum/metabolismo , Xenobióticos/química
5.
World J Microbiol Biotechnol ; 37(1): 8, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33392823

RESUMEN

Dye-decolorization is one of the most important steps in dye-polluted wastewater treatment. The dye-decolorization bacteria were isolated from active sludge collected from wastewater treating pond of a dyeing and printing plant using serial dilution method. Among the 44 bacteria isolates from the active sludge, the strain Bacillus amyloliquefaciens W36 was found to have strong ability in dye-decolorization. The effects of carbon source, nitrogen sources, C/N, metal ions, temperature, pH, and rotation speed for dye-decolorization were investigated. The optimum decolorization conditions were that the strain was grown in enriched mineral salt medium (EMSM) using maltose 1 g/L, (NH4)2SO4 1 g/L as carbon and nitrogen source respectively, supplemented with 100 mg/L different dyes (pH 6.0), at 30 °C, 200 rpm from 48 to 96 h. The bacteria could aerobically decolorize dyes, such as Coomassie brilliant blue (95.42%), Bromcresol purple (93.34%), Congo red (72.37%) and Sarranine (61.7%), within 96 h. The dyes decolorization products were analyzed by ultra-violet and visible (UV-vis) spectroscopy before and after decolorization, which indicated that the four dyes were significantly degraded by the strain. The results indicated that the bacteria Bacillus amyloliquefaciens W36 could be used in dye-polluted wastewater treatment.


Asunto(s)
Bacillus amyloliquefaciens/aislamiento & purificación , Bacillus amyloliquefaciens/metabolismo , Colorantes/metabolismo , Aguas del Alcantarillado/microbiología , Descoloración del Agua/métodos , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodegradación Ambiental , Púrpura de Bromocresol/metabolismo , Carbono/metabolismo , Rojo Congo/metabolismo , Nitrógeno/metabolismo , Colorantes de Rosanilina/metabolismo , Aguas Residuales/microbiología , Purificación del Agua
6.
Biochim Biophys Acta Proteins Proteom ; 1869(1): 140536, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32891739

RESUMEN

There is a high functional diversity within the structural superfamily of porphyrin-binding dimeric α + ß barrel proteins. In this review we aim to analyze structural constraints of chlorite dismutases, dye-decolorizing peroxidases and coproheme decarboxylases in detail. We identify regions of structural variations within the highly conserved fold, which are most likely crucial for functional specificities. The loop linking the two ferredoxin-like domains within one subunit can be of different sequence lengths and can adopt various structural conformations, consequently defining the shape of the substrate channels and the respective active site architectures. The redox cofactor, heme b or coproheme, is oriented differently in either of the analyzed enzymes. By thoroughly dissecting available structures and discussing all available results in the context of the respective functional mechanisms of each of these redox-active enzymes, we highlight unsolved mechanistic questions in order to spark future research in this field.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Carboxiliasas/química , Ferredoxinas/química , Oxidorreductasas/química , Peroxidasas/química , Porfirinas/química , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Dominio Catalítico , Secuencia Conservada , Ferredoxinas/genética , Ferredoxinas/metabolismo , Hemo/química , Hemo/metabolismo , Modelos Moleculares , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo , Porfirinas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Descoloración del Agua/métodos
7.
Environ Geochem Health ; 43(2): 885-896, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32335846

RESUMEN

A pilot-scale photocatalytic membrane bioreactor (PMBR) was developed for the treatment of textile dyeing wastewater. The PMBR is made of mild steel rectangular reactor of photocatalytic unit and polyethersulphone submerged hollow fibre membrane bioreactor unit with the working volume of about 20 L. For easy recovery, the tungsten oxide (WO3) and WO3/1% graphene oxide (GO)-powdered photocatalyst were made into bead and immersed in photocatalytic reactor. Graphene oxide incorporation has shown better results in decolourisation and degradation when compared with WO3 alginate alone. The incorporation of GO into WO3 minimises the recombination of photogenerated electron-hole pairs. The operating conditions such as 3 h of contact time for photocatalysis reaction (WO3/1% GO), 10 h hydraulic retention time for MBR and 100 kPa of transmembrane pressure were optimised. Chemical oxygen demand removal efficiency of 48% was attained with photocatalysis, and the removal efficiency was further increased up to 76% when integrated with MBR. The colour removal efficiency after photocatalysis was 25% further increased up to 70% with MBR. Complete total suspended solid removal has been achieved with this hybrid system.


Asunto(s)
Reactores Biológicos , Colorantes/aislamiento & purificación , Industria Textil , Descoloración del Agua/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Análisis de la Demanda Biológica de Oxígeno , Colorantes/química , Grafito/química , Membranas Artificiales , Óxidos/química , Procesos Fotoquímicos , Tungsteno/química , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/química
8.
Prep Biochem Biotechnol ; 51(1): 16-27, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32633607

RESUMEN

The spore laccase enzyme production by B. amyloliquefaciens was optimized. It was characterized and tested for its textile dye decolorization potential. LB medium was found to be the most promising growth medium with addition of glucose (1-2%), yeast extract (0.1%), FeCl3 (0.01 mM) and MnCl2 (0.001 mM). The optimum spore laccase production was at pH 8, 30 °C, 1:5 medium to air ratio, 2% inoculum size and 7 days incubation. The characterization study of the enzyme showed the maximum activity at 60 °C and pH 6-7.5. It was induced by Ca+2, Mg+2, Fe+3, Zn+2, Cu+2 and Na+ at 1 mM concentration. Also, it was stable in the presence of methanol, ethanol, acetone and chloroform. In addition, it enhanced about 34% by 5 mM H2O2 and it was nearly stable at 10-20 mM H2O2. Furthermore, mediators such as ABTS, syrengaldazine and 2, 6 dimethyl phenol enhanced the spore laccase activity. The spore laccase enzyme efficiently decolorized direct red 81 and acid black 24 after 24 h. Phytotoxicity of the direct red 81 solution after decolorization by tested spore laccase was lower than that of the untreated dye solution. Finally, this study added a promising spore laccase candidate for ecofriendly and cost-effective dye wastewater bio-decolorization.


Asunto(s)
Bacillus amyloliquefaciens/enzimología , Bacillus amyloliquefaciens/aislamiento & purificación , Colorantes/metabolismo , Lacasa/metabolismo , Esporas Bacterianas/enzimología , Textiles , Aguas Residuales/microbiología , Descoloración del Agua/métodos , Contaminantes Químicos del Agua/metabolismo , Compuestos Azo/metabolismo , Compuestos Azo/farmacología , Biodegradación Ambiental , Colorantes/farmacología , Medios de Cultivo , Calor , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Lens (Planta)/efectos de los fármacos , Semillas/efectos de los fármacos , Contaminantes Químicos del Agua/farmacología
9.
J Appl Microbiol ; 130(6): 1949-1959, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33145923

RESUMEN

AIM: To test the potential of a newly isolated strain of Pseudomonas sp., and its optimization for carrying out bioremediation of textile azo dye Procion Red H-3B. METHOD: The isolation of the bacterial strain was done from a textile waste dumping site, followed by screening techniques to study the decolourization of an azo dye. The isolated pure culture was selected by its ability to form clear zones. The biochemical tests gave partial confirmation of the isolates, and the phylogenic analysis made the complete confirmation by 16S rRNA sequencing. RESULT: The identified strain belongs to the genus Pseudomonas. The phylogenic analysis confirmed that the strain belongs to Pseudomonas stutzeri. The culture exhibited maximum decolourization at pH between 6 and 8, the optimum at pH 7·5 and 37°C temperature. A maximum of 96% discolouration was observed at 50 mg l-1 of initial dye concentration after 24 h of incubation period. At a dye concentration equally or greater than 600 mg l-1 , the colour removal was drastically decreased to 30%. The use of fructose at 1% (w/v) and peptone 0·5% (w/v) concentration for 24 h of incubation, as carbon and nitrogen source, showed luxuriant decolourization. The results showed that the Pseudomonas sp. holds immense potential in treating textile effluents containing the dye Procion red H-3B. CONCLUSION: Pseudomonas is a known organism in bioremediation of various textile dyes but not much has being reported about the role of P. stutzeri in the bioremediation of azo dyes. This study revealed the immense potential of this strain in degrading the azo dyes. SIGNIFICANCE AND IMPACT OF THE STUDY: The strain shows prospective for industrial application in the field of textile wastewater treatment. Bioremediation is comparatively cheaper and more effective treatment, thus holds promising future for a cleaner environment.


Asunto(s)
Compuestos Azo/metabolismo , Colorantes/metabolismo , Pseudomonas/metabolismo , Textiles , Contaminantes Químicos del Agua/metabolismo , Compuestos Azo/análisis , Biodegradación Ambiental , Colorantes/análisis , Concentración de Iones de Hidrógeno , Filogenia , Pseudomonas/clasificación , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Temperatura , Aguas Residuales/química , Aguas Residuales/microbiología , Descoloración del Agua/métodos , Contaminantes Químicos del Agua/análisis
10.
Ecotoxicol Environ Saf ; 206: 111381, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33011512

RESUMEN

Today's world needs to control the industrial pollution through smarter ways. Presently, we observed the capacity of soil borne fungi to digest Synozol Red HF-6BN and Synozol Black B. Initially, 86 fungal strains were isolated from soil samples randomly collected from industrial sites. Among these, 31 isolates were capable of dye decolorization on solid media, with SN12f and SN13a isolates showed the highest decolorization capacity. The dye decolorization by both strains was higher (80-95%), when incubated for 120 h under optimized conditions of pH, concentration, nutrient source and temperature. The dye (Synozol red HF-6BN and Synozol black B) decolorization by SN12f isolate was maximum (˃90%) at pH7, whereas the SN13a decolorized 90% of Synozol red HF-6BN and 89% of Synozol black B at pH3. The SN13a and SN12f isolates at 40 mg/L showed de-colorization of 94.71%, 81.4% (for Synozol red HF-6BN) and 90.5%, 84.4% (Synozol black B), respectively. Our isolates also mitigated the toxic effect of azo dyes on the growth of phosphate solubilizing soil bacteria. In fact, the untreated effluent showed toxic effects on the growth of beneficial bacterial by developing zone of inhibition (16.5 mm around Aeromonas spp., 14.5 mm around Sallmonella while 14.25 mm around Citrobacter spp). However, the fungal treated dye was unable to develop zone of inhibition. Laccase activity was positive for both of fungal isolates after incubation on Bassnell Hass Medium (0.0733 U/mL for SN12f and 0.0439 U/mL SN13a). Using molecular approaches (ITS region), SN12f was identified as Aspergillus nidulans, while SN13a as Aspergillus fumigatus. The current study showed that local fungal flora can reclaim the contaminated soils and support the agro-friendly micro-flora.


Asunto(s)
Compuestos Azo/metabolismo , Hongos/metabolismo , Microbiología del Suelo , Descoloración del Agua/métodos , Contaminantes Químicos del Agua/metabolismo , Aspergillus/aislamiento & purificación , Aspergillus/metabolismo , Compuestos Azo/toxicidad , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Biodegradación Ambiental , Hongos/aislamiento & purificación , Concentración de Iones de Hidrógeno , Aguas Residuales/toxicidad , Contaminantes Químicos del Agua/toxicidad
11.
Int J Biol Macromol ; 162: 374-384, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32569694

RESUMEN

In this study, the purification and characterization of a novel polysaccharide-based bioflocculant BM2 produced by a bacterium Bacillus megaterium strain PL8 with self-flocculating property were investigated. The results showed that BM2 was an acidic polysaccharide composed of Gal, GalUA, Glc, GlcUA and Man at a molar ratio of 45.1: 33.8:9.3:9.2:2.4, respectively. The molecular weight of BM2 was 4.55 × 106 Da. BM2 had high flocculation efficiencies across a wide pH ranged from 4 to 11 and a wide temperature ranged from 20 to 100 °C towards kaolin clay. BM2 was a cation-independent bioflocculant which could achieve high flocculation activity without the addition of other cations. Adsorption bridging was the main mechanism in the flocculation process of BM2 towards kaolin clay. The BM2 also displayed a high removal efficiency in terms of Congo red (88.14%) and Pb2+ ions (82.64%). These results suggested that BM2 had a great potential as an efficient bioflocculant candidate in wastewater treatment.


Asunto(s)
Bacillus megaterium/química , Polisacáridos/análisis , Polisacáridos/química , Aguas Residuales/química , Descoloración del Agua/métodos , Purificación del Agua/métodos , Adsorción , Cationes/química , Arcilla/química , Floculación/efectos de los fármacos , Galactosa/análisis , Glucosa/análisis , Ácido Glucurónico/análisis , Ácidos Hexurónicos/análisis , Concentración de Iones de Hidrógeno , Caolín/química , Manosa/análisis , Metales Pesados/química , Microscopía Electrónica de Rastreo , Peso Molecular , Polisacáridos/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
12.
J Appl Microbiol ; 129(6): 1633-1643, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32491245

RESUMEN

AIM: The aim of the study is to investigate the efficiency of Geotrichum candidum in the decolourization and mineralization of synthetic azo dyes. METHODS AND RESULTS: It includes screening of enzymes from G. candidum and its optimization, followed by decolourization and mineralization studies. Decolourization was observed to be maximum in methyl orange (94·6%) followed by Congo red (85%), trypan blue (70·4%) and Eriochrome Black T (55·6%) in 48 h, suggesting the plausible degradation of the azo dyes by G. candidum. The enzyme activity study showed that DyP-type peroxidase has highest activity of 900 mU ml-1 compared to that of laccase (405 mU ml-1 ) and lignin peroxidase (LiP) (324 mU ml-1 ) at optimized pH (6) and temperature (35°C). Moreover, the rate of decolourization was found to be directly proportional to the production of laccase and LiP, unlike DyP-type peroxidase. Furthermore, mineralization study demonstrated reduction in aromatic amines, showing 20% mineralization of methyl orange. CONCLUSION: Geotrichum candidum with its enzyme system is able to efficiently decolourize and mineralize the experimental azo dyes. SIGNIFICANCE AND IMPACT OF THE STUDY: The efficient decolourization and mineralization of azo dyes makes G. candidum a promising alternative in the treatment of textile effluent contaminated with azo dyes.


Asunto(s)
Compuestos Azo/metabolismo , Colorantes/metabolismo , Proteínas Fúngicas/metabolismo , Geotrichum/enzimología , Descoloración del Agua/métodos , Biodegradación Ambiental , Geotrichum/metabolismo , Lacasa/metabolismo , Peroxidasa/metabolismo , Peroxidasas/metabolismo , Textiles
13.
Ecotoxicol Environ Saf ; 198: 110653, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32325258

RESUMEN

Turning biomass into biochar as a multifunctional carbon-based material for water remediation has attracted much research attention. Sawdust and rice husk were selected as feedstock for biochar (BC) production, aiming to explore their performance as a catalyst to activate persulfate (PS) for degrading acid orange 7 (AO7). There was an excellent synergistic effect in the combined BC/PS system. Sawdust biochar (MX) showed a faster and more efficient performance for the AO7 degradation due to its abundant oxygen functional groups, compared to rice husk biochar (DK). In the BC/PS system, AO7 was well decolorized and mineralized. Based on the two-dimensional correlation analysis method, the azo conjugation structure and naphthalene ring of AO7 molecule changed first then benzene ring changed during the reaction. Moreover, AO7 decolorization efficiency increased with the increase of PS concentration and biochar dosage, and the deacrease of pH. Biochar deactivated after used twice. When the biochar reached its adsorption equilibrium of AO7, the AO7 could not be degraded in the BC/PS system. SO4- and OH participated in the reaction together and OH played the main role in activating PS to AO7 decolorization based on the radical scavengers experiment. All of results indicate using biochar to activate PS for degradation of AO7 contaminated water is a promising method.


Asunto(s)
Compuestos Azo/análisis , Bencenosulfonatos/análisis , Carbón Orgánico/química , Compuestos de Sodio/química , Sulfatos/química , Descoloración del Agua/métodos , Contaminantes Químicos del Agua/análisis , Adsorción , Catálisis , Oxidación-Reducción
14.
Carbohydr Polym ; 237: 116128, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32241424

RESUMEN

Herein, a thin film nanocomposite (TFN) membrane was prepared through deposition of a very thin mixed matrix layer of PEBAX®1657/chitosan-wrapped multiwalled carbon nanotubes (CWNTs) on an ultraporous polyethersulfone (PES) substrate. The eco-friendly CWNTs were synthesized via non-covalent functionalization of MWNTs by carbohydrate polymer chitosan. They were then incorporated into PEBAX®1657 matrix at different loadings (0, 0.1, 0.5, 1 and 2 wt%). The membranes were analyzed using SEM, AFM, FTIR, XRD and contact angel analyses. Furthermore, pure water fluxes through the membranes were investigated at 1, 2 and 3 bar and Malachite green separation properties of the membranes were evaluated at 2 bar. The results showed that the highest permeate flux (∼13.85 L/m2h) and rejection (∼98.7%) were obtained at 1 wt% and 0.1 wt% CWNT dosages, respectively. Additionally, the slight flux decline of the membranes during 5 h indicated the improved antifouling properties.


Asunto(s)
Quelantes/química , Quitosano/química , Nanocompuestos/química , Nanotubos de Carbono/química , Aguas Residuales/química , Descoloración del Agua/métodos , Membranas Artificiales
15.
Ecotoxicol Environ Saf ; 198: 110659, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32330790

RESUMEN

Alternative routes to degrade dyes are of crucial importance for the environment. Hence, we report the electrochemical removal of indanthrene blue by using a boron-doped diamond anode, focusing on the toxicity of the treated solutions. Different operational conditions were studied, such as current density (5, 10, and 20 mA cm-2) and electrolyte composition (Na2SO4, Na2CO3, and NaNO3). Besides, the pH was monitored throughout the experiment to consider its direct influence on the ecotoxicity effects. The highest electrochemical oxidation efficiency, measured as color removal, was seen in the 180 min condition of electrolysis in 0.033 M Na2SO4, applying 20 mA cm-2, resulting in a color removal of nearly 91% and 40.51 kWh m-3 of energy consumption. The toxicity towards Lactuca sativa depends solely on pH variations being indifferent to color removal. While the inhibition concentration (IC50) for Raphidocelis subcapitata increases 20% after treatment (in optimized conditions), suggesting that the byproducts are more toxic for this specific organism. Our data highlight the importance of analyzing the toxicity towards various organisms to understand the toxic effect of the treatment applied.


Asunto(s)
Antraquinonas/análisis , Chlorophyta/efectos de los fármacos , Electrólisis/métodos , Lactuca/efectos de los fármacos , Descoloración del Agua/métodos , Contaminantes Químicos del Agua/análisis , Antraquinonas/toxicidad , Boro/química , Chlorophyta/crecimiento & desarrollo , Diamante/química , Electrodos , Lactuca/crecimiento & desarrollo , Oxidación-Reducción , Contaminantes Químicos del Agua/toxicidad
16.
Biomed Res Int ; 2020: 2734135, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32149095

RESUMEN

The release of wastewater from textile dyeing industrial sectors is a huge concern with regard to pollution as the treatment of these waters is truly a challenging process. Hence, this study investigates the triazo bond Direct Blue 71 (DB71) dye decolorization and degradation dye by a mixed bacterial culture in the deficiency source of carbon and nitrogen. The metagenomics analysis found that the microbial community consists of a major bacterial group of Acinetobacter (30%), Comamonas (11%), Aeromonadaceae (10%), Pseudomonas (10%), Flavobacterium (8%), Porphyromonadaceae (6%), and Enterobacteriaceae (4%). The richest phylum includes Proteobacteria (78.61%), followed by Bacteroidetes (14.48%) and Firmicutes (3.08%). The decolorization process optimization was effectively done by using response surface methodology (RSM) and artificial neural network (ANN). The experimental variables of dye concentration, yeast extract, and pH show a significant effect on DB71 dye decolorization percentage. Over a comparative scale, the ANN model has higher prediction and accuracy in the fitness compared to the RSM model proven by approximated R 2 and AAD values. The results acquired signify an efficient decolorization of DB71 dye by a mixed bacterial culture.


Asunto(s)
Compuestos Azo/farmacología , Redes Neurales de la Computación , Descoloración del Agua/métodos , Bacterias/clasificación , Biodegradación Ambiental , Carbono/metabolismo , Concentración de Iones de Hidrógeno , Metagenómica , Nitrógeno/metabolismo
17.
J Hazard Mater ; 388: 121753, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31806438

RESUMEN

Anaerobic biological techniques are widely used in the reductive decolorization of textile wastewater. However, the decolorization efficiency of textile wastewater by conventional anaerobic biological techniques is generally limited due to the low biomass retention capacity and short hydraulic retention time (HRT). In this study, a methane-based hollow fiber membrane bioreactor (HfMBR) was initially inoculated with an enriched anaerobic methane oxidation (AOM) culture to rapidly form an anaerobic biofilm. Then, synthetic azo dye wastewater containing methyl orange (MO) was fed into the HfMBR. MO decolorization efficiency of ∼ 100 % (HRT = 2 to 1.5 days) and maximum decolorization rate of 883 mg/L/day (HRT = 0.5 day) were obtained by the stepwise increase of the MO loading rate into the methane-based HfMBR. Scanning electron microscopy (SEM) and fluorescence in situ hybridization (FISH) analysis visually revealed that archaea clusters formed synergistic consortia with adjacent bacteria. Quantitative PCR (qPCR), phylogenetic and high-throughput sequencing analysis results further confirmed the biological consortia formation of methane-related archaea and partner bacteria, which played a synergistic role in MO decolorization. The high removal efficiency and stable microbial structure in HfMBR suggest it is a potentially effective technique for high-toxic azo dyes removal from textile wastewater.


Asunto(s)
Compuestos Azo/análisis , Reactores Biológicos/microbiología , Membranas Artificiales , Metano/metabolismo , Aguas Residuales/química , Descoloración del Agua/métodos , Contaminantes Químicos del Agua/análisis , Anaerobiosis , Biopelículas/crecimiento & desarrollo , Methanosarcinaceae/genética , Methanosarcinaceae/crecimiento & desarrollo , Filogenia , Proteobacteria/genética , Proteobacteria/crecimiento & desarrollo , ARN Ribosómico 16S
18.
Artículo en Inglés | MEDLINE | ID: mdl-31757086

RESUMEN

Laccases have attracted a great deal of interest because of their remarkable ability for the degradation of synthetic dyes present in wastewaters. New laccase producing sources with robust operational and functional properties are being continuously explored. In this work, the potential for the decolorization and detoxification of synthetic dyes was evaluated in two Mexican strains of the genus Trametes. The decolorization capacity of Trametesmaxima LE130 and Trametes sp. LA1 was tested in solid and liquid media. The phytotoxicity of the degradation products was determined using Raphanussativus and Pisum sativum seeds. In solid media, both strains showed a higher decolorization capacity (p ≤ 0.05) than Phanerochaetechrysosporium ATCC 24725, which is known to be very efficient in lignin and dye-degradation. They produced laccase as the main ligninolytic enzyme; T. maxima LE130 secreted a single isoform of 43.9 kDa, while Trametes sp. LA1 produced three isoforms of 67.3, 58.6 and 52.7 kDa, respectively. Trametes sp. LA1 culture fluids were capable of decolorizing and detoxifying chemically diverse dyes (anthraquinonic dye Remazol Brilliant Blue R, azoic Reactive Black 5 and triphenylmethane Crystal Violet) without the addition of redox mediators. Therefore, this could be considered as a new laccase source which could be potentially competitive in the bioremediation of dye-containing wastewaters.


Asunto(s)
Biodegradación Ambiental , Colorantes/metabolismo , Inactivación Metabólica , Lacasa/metabolismo , Trametes/enzimología , Aguas Residuales/química , Descoloración del Agua/métodos , Colorantes/química , Colorantes/toxicidad , Raphanus/efectos de los fármacos
19.
Int J Biol Macromol ; 137: 886-894, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31284003

RESUMEN

Due to the rapid development of industrialization, the water resources on which we depend are facing unprecedented challenges. Dyes, as an indispensable substance in our lives, have caused great pollution to the water resources in nature, and the removal of dyes from wastewater is becoming an important topic. A porous xylan/poly(acrylic acid)/graphite oxide nanocomposite was prepared by graft polymerization and used for adsorption of cationic ethyl violet dye in wastewaters in this paper. Various techniques, i.e., Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, elemental analysis, scanning electron microscopy, and ultraviolet-visible spectroscopy, were used to study this composite. Adsorption isotherm measurements showed that the composite's adsorption behavior fits the Langmuir isotherm adsorption model. Adsorption tests showed that this material has excellent adsorption properties; the maximum adsorption capacity for ethyl violet dye was 273.99 mg/g. Investigation of the adsorption mechanism indicated that electrostatic forces and π-π effects are mainly involved in adsorption. Desorption cycling tests showed that the adsorption efficiency of the composite was still over 95% after 3 cycles. These results show that this porous xylan/poly (acrylic acid)/graphite oxide nanocomposite has potential applications in cationic dye removal.


Asunto(s)
Colorantes/química , Colorantes/aislamiento & purificación , Grafito/química , Nanocompuestos/química , Descoloración del Agua/métodos , Agua/química , Xilanos/química , Adsorción , Técnicas de Química Sintética , Modelos Moleculares , Conformación Molecular , Porosidad , Soluciones , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación
20.
Int J Biol Macromol ; 137: 1086-1101, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31279059

RESUMEN

As water is the most important source for survival for all individuals around the world, water pollution via synthetic toxic dyes and microorganisms is considered as a serious worldwide environmental problem. The present work aimed to synthesize crosslinked grafted xanthan gum (XG) films with poly (N-vinyl imidazole), PVI, for both removing crystal violet (CV) dye and inhibiting Escherichia coli (E. coli) growth. XG-grafted-PVI was prepared using potassium persulfate as an initiator to give different percentage of graft yield and using N, N'-methylene bisacrylamide (MBA) as a crosslinking agent. The structure of grafted XG films was elucidated via various analysis tools including FTIR, XRD, FE-SEM and EDX. Results of CV adsorption studies showed that maximum CV removal was 99.7% (625 mgg-1) which was achieved at: 95% GY, 2.5% MBA, 40 mg of adsorbent into 50 mL of 500 mgL-1 CV dye solution, pH 7, temperature (30 °C) and adsorption time (7 h). Also, results fitted well with Langmuir isotherm model. Moreover, pseudo-first order and intraparticle diffusion model participated in the mechanism of CV adsorption on grafted XG surface, in addition to its efficient recycling ability. Furthermore, antibacterial activities results of crosslinked grafted XG revealed their high inhibiting effect for E.coli growth.


Asunto(s)
Colorantes/química , Colorantes/aislamiento & purificación , Violeta de Genciana/química , Violeta de Genciana/aislamiento & purificación , Polisacáridos Bacterianos/química , Descoloración del Agua/métodos , Adsorción , Escherichia coli/efectos de los fármacos , Hidrogeles/química , Concentración de Iones de Hidrógeno , Imidazoles/química , Cinética , Concentración Osmolar , Polisacáridos Bacterianos/farmacología , Polivinilos/química , Temperatura , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...